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Abstract: - The heat conduction across a collection of square modules forming a large plane wall is a one–

dimensional problem, whereas the heat conduction across a collection of scalloped modules forming a 

large corrugated wall is a two–dimensional problem. In this work, the two dimensional heat conduction 

equation for three different scalloped modules derived from the square module is solved numerically with 

the Finite Element Method in the platform of COMSOL Multiphysics. When the temperature fields in the 

modules are post-processed, the conduction shape factors S to be used in the algebraic formula 

                                                 
 CH TTSkQ    

can be easily determined. The heat conductive increments provided by the derived scalloped modules are 

qualitatively compared with the square module, subsequently accounting for beneficial mass reductions. 

 

Keywords: - Large plane wall, stackable square modules, large corrugated wall, stackable scalloped   

                   modules, incremental heat conduction, mass reduction  

 

 

Nomenclature  

 
AS surface area, m

2
  

k thermal conductivity, W/mC 

L thickness of large plane wall  

            or side of square module, m 

H height of large plane wall, m 

qS surface heat flux, W/m
2
  

 

Sq  mean surface heat flux, W/m
2
  

Q heat flow, W 

S conduction shape factor, m 

T temperature, C 

TC cold side temperature, C 

TH  hot side temperature, C 

Tmax maximum temperature in eq. (6), C 

x,y coordinates, m 
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W width of large plane wall, m 

δ (y) thickness of scalloped module  

            varying with height, m  

 

 

1. Introduction  
 

Numerous studies on steady heat conduction in 

one–, two– and three–dimensional bodies 

subjected to various types of heating and cooling 

conditions at the surfaces have been documented 

in technical articles as well as in textbooks on heat 

conduction.  

 

The exact analytic solutions of 2–D heat 

conduction problems are normally expressed in 

the form of Fourier infinite series (Carslaw and 

Jaeger [1]). These infinite series are 

inconvenient to use because of two factors: 1) 

knowledge of the eigenvalues and 

eigenfunctions and 2) large number of terms 

need to be retained to secure convergence. When 

the 2–D conduction problems involve irregular 

geometries, exact analytic solutions are 

impossible and numerical solutions with the 

Finite Element Method (FEM) are well suited 

(Pepper and Heinrich [2]).  

 

During the pre-computer age, an effective way 

of approximate estimating conduction heat 

transfer through complex bodies with constant 

surface temperatures was based on the graphical 

method. The graphical method eventually 

evolved into an approximate mathematical 

method that led to the conduction shape factor. 

The idea behind the concept of conduction shape 

factor as conceived by Langmuir et al. [3] back in 

1913 was to articulate it with analytical or 

numerical techniques. Conduction shape factors 

have been determined analytically for numerous 

configurations and compact equations have been 

compiled by Andrews [4], Sunderland and 

Johnson [5] and Hahne and Grigull [6] for 

relevant configurations in engineering practice. 

Additionally, tables in heat transfer textbooks 

[7-13] present a limited number of conduction 

shape factors. Since most of the relations for 

conduction shape factors are approximations to 

exact solutions, restrictions on their applicability 

have to be accounted for.  

 

Within the framework of one–dimensional bodies 

the large plane wall with a hot surface and a cold 

surface constitutes the first example in heat 

conduction [7-15]. If oriented vertically, the plane 

wall can be conceived as a collection of stackable 

square modules; each square module having one 

hot vertical surface, one cold vertical surface and 

two horizontal adiabatic surfaces. Clearly, the 

modeling of a typical square module entails to a 

simple one–dimensional heat equation whose 

exact analytic solution is easy. On the contrary, a 

different state of affairs transpires when the hot 

and cold vertical surfaces of the square module are 

symmetrically curved inward to form a vertical 

large corrugated wall. This case implicates a two–

dimensional heat equation because the heat flux 

vector possesses horizontal and vertical 

components. To our surprise, the heat conduction 

characteristics of large corrugated wall remains 

unknown and are unavailable in the specialized 

literature.  

 

The underlying goal of the present paper on 

engineering education is to delineate the 

numerical calculation of a general class of 

conduction shape factors that emanate from a 

vertical large corrugated wall with scalloped 

modules.  

 

The body of the paper is divided into three 

sections. In the first section, three modules with 

different degrees of scallopness along with their 

descriptive two–dimensional heat equations are 

addressed. The numerical computations with the 

Finite Element Method (FEM) are briefly 

explained in the second section. The third section 

discusses the numerically–determined 2–D 

temperature fields T(x, y) and the magnitudes of 

heat conduction Q across the three scalloped 

modules.  
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2. Case study: Large wall formed 

with scalloped modules  
 

Consider a large vertical plane wall with finite 

thickness L, infinite height H (>> L) and infinite 

depth W (>> L). A high temperature TH is 

applied at the left surface and a low temperature 

TC is applied at the right surface. The thermal 

conductivity k of the material is constant in the 

temperature interval of operation [TC,TH]. 

Equivalently, the plane wall can be conceived as 

an assembly of stackable square modules of side 

L with TH at the left surface, TC at the right 

surface where the upper and bottom horizontal 

surfaces are adiabatic. Figure 1a is a sketch of 

the square module, named here the primary 

module. Accordingly, the one–dimensional heat 

equation in a square module is  

 

 0
2

2


dx

Td
    (1)  

 

and the heat flow Q through it corresponds to 

 

 )( CH TT
L

WH
kQ 







 
         (2) 

 

When the hot and cold vertical surfaces of a 

square module of side L are symmetrically bent 

inward, a family of derived modules with 

variable thickness δ (y) satisfying 0 < δ < L can 

be derived. For a “proof–of–concept” study, we 

chose three derived modules. First, a slightly 

scalloped module owing the largest thickness δ 

= L at the two adiabatic surfaces and the 

smallest thickness δmin = L/2 at the horizontal 

mid–plane of symmetry is shown in Figure 1b. 

Second, a moderately scalloped module owing 

the largest thickness δ = L at the two adiabatic 

surfaces and the smallest thickness δmin =  L/4 at 

the horizontal mid–plane of symmetry is shown 

in Figure 1c. Third, when the curved surfaces 

nearly touch each other (an unreal limiting 

condition), a derived module depicted in Figure 

1d called the severely scalloped module has the 

largest thickness δ = L at the two adiabatic 

surfaces and the smallest thickness δmin ≈ 0 at 

the horizontal mid–plane of symmetry.  

 

 Framed in a Cartesian coordinate system, the 

three scalloped modules chosen are governed by 

the two–dimensional heat conduction equation  

 

0
2

2

2

2











y

T

x

T
  (3) 

 

The applicable boundary conditions are of 

mixed type. First, constant specified 

temperatures TH and TC (Dirichlet type) are 

assigned at the left and right curved surfaces, 

respectively. Second, the upper and lower 

horizontal flat surfaces are taken as planes of 

symmetry signifying null temperature gradients 

0
y

T





(von Neumann type).  

 

 

3. Conduction shape factor  
 

When one high temperature TH and a low 

temperature TC are specified along parts of the 

periphery of a two–dimensional body, the heat 

flow Q passing through the body can be 

computed by the algebraic formula conceived by 

Langmuir et al. [3]: 

 

  CH TTSkQ                 (4)  

 

where S is the conduction shape factor in m and k 

is the constant thermal conductivity k of the 

material in W/mC. The quantity S depends only 

on the body geometry (i.e., shape and 

dimensions). Interestingly, this short–cut approach 

provides a quick estimate for the heat transfer 

passing through the body. 

 

Shifting the attention to the 1–D square module 

shown in Figure 1a, the calculation of the 

conduction shape factor S is arithmetic and 
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equates to 

 

L

WH

L

A
S s x


  (5) 

 

 

In contrast, the calculations of the conduction 

shape factors S for the trio of 2–D scalloped 

modules in Figures 1b, 1c and 1d are involved and 

forcibly have to be computed from the numerical 

solution of Eq. (3). 

 

 

4. Numerical computations  
 

For the sake of simplicity, the computations are 

initiated with a square module of side L = 1 m 

and width W = 1 m, high temperature TH = 1 C 

at the left surface, low temperature TC = 0 C at 

the right surface. The material has constant 

thermal conductivity k = 1 W/m.C in the 

temperature interval of operation [0, 1].  

 

The availability of fast and inexpensive 

computers allows heat conduction problems that 

are intractable to analytic methods to be solved 

numerically in a relatively easy manner. While 

the Finite Difference Method (FDM) in its basic 

form is restricted to rectangular shapes and 

simple alterations thereof, the handling of 

complex bodies and/or irregular boundaries with 

the Finite Element Method (FEM) is 

straightforward [2]. 

Equation (3) subject to the boundary conditions 

was solved with FEM and the numerical 

computations were performed with the advanced 

software code COMSOL 3.1 [16], a 

multiphysics MATLAB–based program that 

possesses a wide array of modeling capabilities. 

The COMSOL Multiphysics simulation 

environment provides all steps in the 

modeling/calculation processes, namely 1) 

defining the geometry, 2) specifying the physics, 

3) constructing the mesh, 4) solving the system 

of algebraic equations and 5) post-processing the 

numerical results. With regards to the meshing, 

COMSOL features fully automatic adaptive 

mesh generation with a precise size control of 

the mesh. Embedded into COMSOL are high–

performance solvers capable of handling the 

large systems of algebraic equations with ease.  

It is typical that the word "element" refers either 

to the triangles in the computational domain, or 

the piecewise linear basis function, or both. It 

should be added that FEM is not restricted to 

triangles, but can be defined on quadrilateral 

sub-domains or higher order shapes, e.g., 

curvilinear elements [2].  

After satisfactory convergence of the 2-D 

temperature fields T (x,y) was reached and 

mesh–independence were secured for the three 

scalloped modules, representative constant 

temperature lines or isotherms were plotted for 

each module. The convergence criteria was 

overseen using the standard norm 

 

  )T  (T 
T

1
     

2n

i

n

i

N

1=i














2/1

1

max  (6)

 

 

where ε typically varied between 10
-4
 and 10

-6
. 

Upon performing a sensitivity analysis of the 

mesh, the optimal number of elements turned out 

to be 401 in the slightly scalloped, 558 in the 

moderate scalloped and 618 in the severely 

scalloped modules.  

 

First, the surface heat flux qs(s) perpendicular 

the hot curved surface of a scalloped module is 

obtained by applying Fourier’s law to the 2–D 

temperature field T(x,y). Second, the mean 

surface heat flux Sq  is determined from the 

mean value integral 

 

dssq
L

q
L

SS )(
1

0   (7) 

                             

 

5. Discussion of results  
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In this section, we assessed the geometric effects 

and their bearing on the heat conduction through 

the three derived scalloped modules with respect 

to the basic square module.  

 

The numerical 2-D temperature fields T (x,y) 

for the three derived scalloped modules are 

displayed in Figures 2b, 2c and 2d.  In Figures 

2b and 2c, it is seen that the curved isotherms 

appear toward the hot and cold curved sides, 

whereas vertical isotherms characterize the 

central part, i.e., the vertical plane of symmetry. 

The limiting condition in Figure 2d exhibits full 

curved isotherms in the entire module.  

 

A brief discussion of the items listed in Table 1 

seems to be appropriate now. First, the curved 

side of the slightly scalloped module is 15% 

larger than the straight side of the square 

module. This number indicates a mass 

reduction for the slightly scalloped module of 

34% with respect to the mass of the square 

module. First, the conduction shape factor S 

across the slightly scalloped module amounts to 

91% higher than the conduction shape factor S 

across the square module. Second, the curved 

side of the moderately scalloped module is 21% 

larger than the straight side of the square 

module. This is equivalent to a 41% mass 

reduction for the moderately scalloped module 

in reference to the mass of the square module. 

The conduction shape factor S across the 

moderately scalloped module amounts to 135% 

higher than the conduction shape factor S 

across the square module. 

 

The passage from the square module with 

1
L


 to a slightly scalloped module wit

2/1min 
L



 
results in a significant mass 

reduction from 1 kg to 0.66 kg and a remarkable 

increment in the mean heat flux Sq going from 

1 W/m to 1.66 W/m. This combination of factors 

translates into a conduction shape factor of 1.91 

m for the slightly scalloped module as compared 

to 1 m for the basic square module. In other 

words, this means that decreasing the mass of a 

large plane wall by one third, the heat 

conduction through it is almost doubled. 

 

The passage from the slightly scalloped module  

with 2/1min 
L


to the moderately scalloped 

module with 4/1min 
L


 results in a modest 

mass reduction from 0.66 kg to 0.59 kg and a 

small increment in mean heat flux Sq from 

1.66 W/m to 1.94 W/m. This in turn is 

equivalent to a conduction shape factor of 2.35 

m for the moderately scalloped module with 

4/1min 
L


 as compared to 1.91 m for the 

slightly scalloped module. There is not 

significant difference of the mass and in the heat 

conductance C between the slightly scalloped 

module with 2/1min 
L


and the moderately 

scalloped module with 4/1min 
L


. 

 

As far as the conduction shape factor S of the 

derived scalloped modules is concerned, it 

depends on two characteristic lengths, one is the 

smallest thickness δmin and the other is the side L. 

The correlation equation for the conduction shape 

factor S was computed in terms of the relative 

thickness 
L

min
 with Minitab [17]:  

 

3

min

2

min

min

596.2983.3

356.2034.0
1






















LL

LS





 (8) 

 

Here, the R
2
 value is 0.99 and the maximum error 
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is 3.11% at .2/1min 
L


  

 

To put the correlation equation (8) at work, we 

chose a representative example. For a scalloped 

module characterized with an intermediate the 

relative thickness 
L

min
 = 1/8 and active side of 

1.3 m, the mass is halved from 1 kg to 0.5 kg and 

the conduction shape factor S ascends from 1 m to 

3.69 m (more than a three-fold factor). 

     

 

6. Conclusions  

 

In this paper on engineering education, we have 

demonstrated the benefits of the Finite Element 

Method and COMSOL Multiphysics to calculate 

two–dimensional heat conduction in irregular 

bodies in a heat transfer course. Additionally, we 

have presented a curious concept aiming at 

augmenting the heat conduction in a large plane 

wall. That is, curving inward the opposite heated 

and cooled sides of a primary square module 

symmetrically, a family of derived scalloped 

modules was created in a natural way. The latter 

have proved to be exemplary for heat conduction 

intensification because the heat flux paths are less 

tortuous in the central regions of adjacent 

scalloped modules.  Further, from the standpoint 

of fabrication, the derived scalloped modules in a 

large corrugated wall required less material than 

the counterpart primary square module in a large 

plane wall. The outcome of this paper may be of 

interest to instructors of the heat transfer course. 
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Table 1. Comparison of the conduction shape factor S between the primary square module and the three 

derived scalloped modules   
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      Module configuration      

    Size of         

active side        

 Mass 

  (kg) 

Mean heat flux 

     (W/m)           

   Conduction 

 shape factor S  

            (m) 

 square       1.00   1.00         1.00            1.00 

          slightly scalloped  

             
L

min
= 1/2 

      1.15   0.66         1.66            1.91 

      moderately scalloped  

             
L

min
= 1/4 

      1.21   0.59         1.94            2.35 

        severely scalloped  

              
L

min
 ≈ 0              

      1.49   0.32       21.73          32.33 
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Figure 1a Square module 

 

 

 

 
 
 

Figure 1b Slightly scalloped module with 
L

min
 = 1/2 
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Figure 1c Moderately scalloped module with 
L

min
 = 1/4 

 

 

 

 

 

 
 

Figure 1d Severely scalloped module with 
L

min
 ≈ 0 
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Figure 2a Isotherms plot for the square module 
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Figure 2b Isotherms plot for the slightly scalloped module with 
L

min
 = 1/2         
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Figure 2c Isotherms plot for the moderately scalloped module with 
L

min
 = 1/4                    
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Figure 2d Isotherms plot for the severely scalloped module with 
L

min
 ≈  0                
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